Mechanical Stability of Microtubule Lattices - Molecular Dynamic Indentation Studies
نویسندگان
چکیده
منابع مشابه
A molecular-mechanical model of the microtubule.
Dynamic instability of MTs is thought to be regulated by biochemical transformations within tubulin dimers that are coupled to the hydrolysis of bound GTP. Structural studies of nucleotide-bound tubulin dimers have recently provided a concrete basis for understanding how these transformations may contribute to MT dynamic instability. To analyze these ideas, we have developed a molecular-mechani...
متن کاملGeneration of microtubule stability subclasses by microtubule- associated proteins: implications for the microtubule "dynamic instability" model
We have developed a method to distinguish microtubule associated protein (MAP)-containing regions from MAP-free regions within a microtubule, or within microtubule sub-populations. In this method, we measure the MAP-dependent stabilization of microtubule regions to dilution-induced disassembly of the polymer. The appropriate microtubule regions are identified by assembly in the presence of [3H]...
متن کاملOn generalized topological molecular lattices
In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and defi...
متن کاملMolecular and Mechanical Causes of Microtubule Catastrophe and Aging.
Tubulin polymers, microtubules, can switch abruptly from the assembly to shortening. These infrequent transitions, termed "catastrophes", affect numerous cellular processes but the underlying mechanisms are elusive. We approached this complex stochastic system using advanced coarse-grained molecular dynamics modeling of tubulin-tubulin interactions. Unlike in previous simplified models of dynam...
متن کاملTemperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments
Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.1401